Hypertonic inhibition of exocytosis in neutrophils: central role for osmotic actin skeleton remodeling.
نویسندگان
چکیده
Hypertonicity suppresses neutrophil functions by unknown mechanisms. We investigated whether osmotically induced cytoskeletal changes might be related to the hypertonic inhibition of exocytosis. Hyperosmolarity abrogated the mobilization of all four granule types induced by diverse stimuli, suggesting that it blocks the process of exocytosis itself rather than individual signaling pathways. Concomitantly, osmotic stress provoked a twofold increase in F-actin, induced the formation of a submembranous F-actin ring, and abolished depolymerization that normally follows agonist-induced actin assembly. Several observations suggest a causal relationship between actin polymerization and inhibition of exocytosis: 1) prestimulus actin levels were inversely proportional to the stimulus-induced degranulation, 2) latrunculin B (LB) prevented the osmotic actin response and restored exocytosis, and 3) actin polymerization induced by jasplakinolide inhibited exocytosis under isotonic conditions. The shrinkage-induced tyrosine phosphorylation and the activation of the Na(+)/H(+) exchanger were not affected by LB. Inhibition of osmosensitive kinases failed to prevent the F-actin change, suggesting that the osmotic tyrosine phosphorylation and actin polymerization are independent phenomena. Thus cytoskeletal remodeling appears to be a key component in the neutrophil-suppressive, anti-inflammatory effects of hypertonicity.
منابع مشابه
Osmotic stress activates Rac and Cdc42 in neutrophils: role in hypertonicity-induced actin polymerization.
Hypertonicity inhibits a variety of neutrophil functions through poorly defined mechanisms. Our earlier studies suggest that osmotically induced actin polymerization and cytoskeleton remodeling is a key component in the hypertonic block of exocytosis and cell movement. To gain insight into the signaling mechanisms underlying the hyperosmotic F-actin response, we investigated whether hypertonici...
متن کاملI-6: Role of Actin Cytoskeleton during Mouse Sperm Acrosomal Exocytosis
Background: Mammalian sperm must undergo a process termed capacitation to become competent to fertilize an egg. Capacitation renders the sperm competent by priming the cells to undergo a rapid exocytotic event called acrosomal exocytosis that is stimulated by the zona pellucida (ZP) of the egg or progesterone. Over the years, several biochemical events have been associated with the capacitation...
متن کاملVesicular trafficking through cortical actin during exocytosis is regulated by the Rab27a effector JFC1/Slp1 and the RhoA-GTPase–activating protein Gem-interacting protein
Cytoskeleton remodeling is important for the regulation of vesicular transport associated with exocytosis, but a direct association between granular secretory proteins and actin-remodeling molecules has not been shown, and this mechanism remains obscure. Using a proteomic approach, we identified the RhoA-GTPase-activating protein Gem-interacting protein (GMIP) as a factor that associates with t...
متن کاملCytokine secretion by CD4+ T cells at the immunological synapse requires Cdc42-dependent local actin remodeling but not microtubule organizing center polarity.
Cytokine secretion by T lymphocytes plays a central role in mounting adaptive immune responses. However, little is known about how newly synthesized cytokines, once produced, are routed within T cells and about the mechanisms involved in regulating their secretions. In this study, we investigated the role of cytoskeleton remodeling at the immunological synapse (IS) in cytokine secretion. We sho...
متن کاملSelective inhibition of IgG-mediated phagocytosis in gelsolin-deficient murine neutrophils.
Phagocytosis and the microbicidal functions of neutrophils require dynamic changes of the actin cytoskeleton. We have investigated the role of gelsolin, a calcium-dependent actin severing and capping protein, in peripheral blood neutrophils from gelsolin-null (Gsn-) mice. The phagocytosis of complement opsonized yeast was only minimally affected. In contrast, phagocytosis of IgG-opsonized yeast...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 279 3 شماره
صفحات -
تاریخ انتشار 2000